Solution 8

1. Define the operator norm of an $n \times n$ -matrix A by

$$||A|| = \sup\{|Ax| : |x| \le 1\},\$$

where |x| is the Euclidean norm of $x \in \mathbb{R}^n$.

(a) Show that

$$||A|| = \sup \left\{ \frac{|Ax|}{|x|} : x \neq 0 \right\}$$
.

(b) Show that

$$||A|| = \inf\{M : |Ax| \le M|x|, \forall x\}$$

(c) Show that $||A||^2$ is equal to the largest eigenvalue of the symmetric matrix A^tA (A^t is the transpose of A).

Solution. (a) Use |Ax|/|x| = |Ay| for y = x/|x| which is a unit vector.

(b) Let M satisfy $|Ax| \leq M|x|$ for all x. Restrict it to $|x| \leq 1$ and take sup to get $||A|| = \sup |Ax| \leq M$. On the other hand, ||A|| satisfies $|Ax| \leq ||A|| |x|$ for all x, hence ||A|| is one of these M. It shows that inf can be replaced by min.

(c) $|Ax|^2 = \langle Ax, Ax \rangle = \langle A^tAx, x \rangle$ where $\langle \cdot, \cdot \rangle$ is the Euclidean product. Recall that A^tA is a non-negative matrix and max $\{\langle A^tAx, x \rangle: |x| \leq 1\}$ gives the largest eigenvalue of this non-negative matrix.

2. There are other norms defined on \mathbb{R}^n other than the Euclidean one. For example, now consider $||x||_1 = \sum_{k=1}^n |x_k|$. For an $n \times n$ -matrix A, define

$$||A||_1 = \sup\{||Ax||_1 : ||x||_1 \le 1\}$$
.

(a) Show that

$$|A||_1 = \inf\{M: ||Ax||_1 \le M ||x||_1, \forall x\}$$

(b) Show that

$$||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

(c) Show that the conclusion in Problem 8, Ex 7, still holds when the condition $\sum_{i,j} a_{ij}^2 < 1$ is replaced by the weaker condition $||A||_1 < 1$.

Solution. (a) For $x \neq 0$, $x/\|x\|_1$ has norm equal to 1. So $\|A(x/\|x\|_1)\|_1 \leq \|A\|_1$ which implies $|Ax|_1 \leq \|A\|_1 \|x\|_1$ by linearity. Next, if $\|Ax\|_1 \leq M \|x\|_1$, take $x, \|x\|_1 \leq 1$ in this inequality and then take sup over all such x. By the def of $\|A\|_1$ we get $\|A\|_1 \leq M$. So (a) holds.

(b) Let $\alpha = \max_j \sum_{i=1}^n |a_{ij}|$. Taking $x = e_j$ in $||Ax||_1 \le M ||x||_1$, we get $|\sum_i a_{ij}| \le M$ for all j. On the other hand, it is clear that $||Ax||_1 \le \alpha ||x||_1$, so by (a) $\alpha = ||A||_1$.

(c) Yes, just change the Euclidean norm to $\|\cdot\|_1$ and follow the same proof.

This problem shows, when different norms are used in the Euclidean space, the notion of smallness changes accordingly. The norm $||A||_1$ applies to some situation when $||A|| \ge 1$ but $||A||_1 < 1$.

3. Let f be continuously differentiable on [a, b]. Show that it has a differentiable inverse if and only if its derivative is either positive or negative everywhere.

Solution. \Rightarrow . Let g be the inverse of f. When g is differentiable, we can use the chain rule in the relation g(f(x)) = x to get g'(f(x))f'(x) = 1, which implies that f'(x) never vanishes. Since f' is continuous, if $f'(x_0) > 0$ at some x_0 , we claim f' is positive everywhere. Suppose $f'(x_1) < 0$ at some x_1 , by continuity $f'(x_2) = 0$ at some x_2 between x_0 and x_1 , contradiction holds. Hence f' is positive everywhere. Similarly, it is negative everywhere when it is negative at some point.

 \Leftarrow . Let us assume f' is always positive (the other case can be treated similarly.) Let x < y in [a, b]. By the mean value theorem, there is some $z \in (x, y)$ such that f(y) - f(x) = f'(z)(y - x) > 0, so f is strictly increasing. According to an old result in 2050, a continuous, strictly increasing function maps [a, b] to the interval [f(a), f(b)] and its inverse g is continuous. Then we can use the Carathedory Criterion in 2060 to show that g is differentiable and, in fact, satisfies g'(f(x)) = 1/f'(x).

4. Consider the function

$$f(x) = \frac{1}{2}x + x^2 \sin \frac{1}{x}, \quad x \neq 0,$$

and set f(0) = 0. Show that f is differentiable at 0 with f'(0) = 1/2 but it has no local inverse at 0. Does it contradict the inverse function theorem?

Solution. $|f(x) - f(0) - (1/2)x| = |x^2 \sin(1/x)| = O(x^2)$, hence f is differentiable at 0 with f'(0) = 1/2. Let $x_k = 1/2k\pi$, $y_k = 1/(2k\pi + 1)$, then $f'(x_k) = -1/2$, $f'(y_k) = 3/2$. Then it is clear that f is not injective in $I_k = (y_k, x_k)$. Since any neighborhood of 0 must include contain some I_k , this shows that f it has no local inverse at 0. It does not contradict the inverse function theorem because f' is not continuous at 0.

Note. This problem shows that the C^1 -condition is needed in the Inverse Function Theorem.

5. Consider the mapping from \mathbb{R}^2 to itself given by $f(x,y) = x - x^2$, g(x,y) = y + xy. Show that it has a local inverse at (0,0). And then write down the inverse map so that its domain can be described explicitly.

Solution. Let $u = x - x^2$, v = y + xy. The Jacobian determinant is 1 at (0,0) so there is an inverse in some open set containing (0,0). Now we can describe it explicitly as follows. From the first equation we have

$$x = \frac{1 \pm \sqrt{1 - 4u}}{2}.$$

From u(0,0) = 0 we must have

$$x = \frac{1 - \sqrt{1 - 4u}}{2} \; .$$

Then

$$y = \frac{v}{1+x} = \frac{2v}{1-\sqrt{1-4u}}$$

We see that the largest domain in which the inverse exists is $\{(u, v) : u \in (0, 1/4), v \in \mathbb{R}\}$.

6. Let F be a continuously differentiable map from the open $U \subset \mathbb{R}^n$ to \mathbb{R}^n whose Jacobain determinant is non-vanishing everywhere. Prove that it maps every open set in U to an open set, that is, F is an open map. Does its inverse $F^{-1}: F(U) \to U$ always exist?

Solution. Let $G \subset U$ be open and $y_0 = F(x_0), x_0 \in G$. By the inverse function theorem, there are balls $B_{\delta}(x_0) \subset G$ and $B_R(y_0)$ such that $B_R(y_0) \subset F(B_{\delta}(x_0))$, so F(G) is open. That is, F is an open map. On the other hand, the change from the rectangular coordinates to the polar coordinators is an example where an everywhere locally invertible map is not globally invertible.