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Solution 8

1. Define the operator norm of an n× n-matrix A by

‖A‖ = sup{|Ax| : |x| ≤ 1} ,

where |x| is the Euclidean norm of x ∈ Rn.

(a) Show that

‖A‖ = sup

{
|Ax|
|x|

: x 6= 0

}
.

(b) Show that
‖A‖ = inf{M : |Ax| ≤M |x|, ∀x} .

(c) Show that ‖A‖2 is equal to the largest eigenvalue of the symmetric matrix AtA (At

is the transpose of A).

Solution. (a) Use |Ax|/|x| = |Ay| for y = x/|x| which is a unit vector.

(b) Let M satisfy |Ax| ≤ M |x| for all x. Restrict it to |x| ≤ 1 and take sup to get
‖A‖ = sup |Ax| ≤M . On the other hand, ‖A‖ satisfies |Ax| ≤ ‖A‖|x| for all x, hence ‖A‖
is one of these M . It shows that inf can be replaced by min.

(c) |Ax|2 =< Ax,Ax >=< AtAx, x > where < ·, · > is the Euclidean product. Recall that
AtA is a non-negative matrix and max{< AtAx, x >: |x| ≤ 1} gives the largest eigenvalue
of this non-negative matrix.

2. There are other norms defined on Rn other than the Euclidean one. For example, now
consider ‖x‖1 =

∑n
k=1 |xk|. For an n× n-matrix A, define

‖A‖1 = sup{‖Ax‖1 : ‖x‖1 ≤ 1} .

(a) Show that
‖A‖1 = inf{M : ‖Ax‖1 ≤M‖x‖1, ∀x} .

(b) Show that

‖A‖1 = max
j

n∑
i=1

|aij | .

(c) Show that the conclusion in Problem 8, Ex 7, still holds when the condition
∑

i,j a
2
ij <

1 is replaced by the weaker condition ‖A‖1 < 1.

Solution. (a) For x 6= 0, x/‖x‖1 has norm equal to 1. So ‖A(x/‖x‖1)‖1 ≤ ‖A‖1 which
implies |Ax|1 ≤ ‖A‖1‖x‖1 by linearity. Next, if ‖Ax‖1 ≤ M‖x‖1, take x, ‖x‖1 ≤ 1 in this
inequality and then take sup over all such x. By the def of ‖A‖1 we get ‖A‖1 ≤ M . So
(a) holds.

(b) Let α = maxj
∑n

i=1 |aij |. Taking x = ej in ‖Ax‖1 ≤M‖x‖1, we get |
∑

i aij | ≤M for
all j. On the other hand, it is clear that ‖Ax‖1 ≤ α‖x‖1, so by (a) α = ‖A‖1.
(c) Yes, just change the Euclidean norm to ‖ · ‖1 and follow the same proof.

This problem shows, when different norms are used in the Euclidean space, the notion of
smallness changes accordingly. The norm ‖A‖1 applies to some situation when ‖A‖ ≥ 1
but ‖A‖1 < 1.
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3. Let f be continuously differentiable on [a, b]. Show that it has a differentiable inverse if
and only if its derivative is either positive or negative everywhere.

Solution. ⇒. Let g be the inverse of f . When g is differentiable, we can use the
chain rule in the relation g(f(x)) = x to get g′(f(x))f ′(x) = 1, which implies that f ′(x)
never vanishes. Since f ′ is continuous, if f ′(x0) > 0 at some x0, we claim f ′ is positive
everywhere. Suppose f ′(x1) < 0 at some x1, by continuity f ′(x2) = 0 at some x2 between
x0 and x1, contradiction holds. Hence f ′ is positive everywhere. Similarly, it is negative
everywhere when it is negative at some point.

⇐. Let us assume f ′ is always positive (the other case can be treated similarly.) Let
x < y in [a, b]. By the mean value theorem, there is some z ∈ (x, y) such that f(y) −
f(x) = f ′(z)(y − x) > 0, so f is strictly increasing. According to an old result in 2050,
a continuous, strictly increasing function maps [a, b] to the interval [f(a), f(b)] and its
inverse g is continuous. Then we can use the Carathedory Criterion in 2060 to show that
g is differentiable and, in fact, satisfies g′(f(x)) = 1/f ′(x).

4. Consider the function

f(x) =
1

2
x+ x2 sin

1

x
, x 6= 0,

and set f(0) = 0. Show that f is differentiable at 0 with f ′(0) = 1/2 but it has no local
inverse at 0. Does it contradict the inverse function theorem?

Solution. |f(x) − f(0) − (1/2)x| = |x2 sin(1/x)| = O(x2), hence f is differentiable at 0
with f ′(0) = 1/2. Let xk = 1/2kπ, yk = 1/(2kπ + 1), then f ′(xk) = −1/2, f ′(yk) = 3/2.
Then it is clear that f is not injective in Ik = (yk, xk). Since any neighborhood of 0
must include contain some Ik, this shows that f it has no local inverse at 0. It does not
contradict the inverse function theorem because f ′ is not continuous at 0.

Note. This problem shows that the C1-condition is needed in the Inverse Function Theo-
rem.

5. Consider the mapping from R2 to itself given by f(x, y) = x − x2, g(x, y) = y + xy .
Show that it has a local inverse at (0, 0). And then write down the inverse map so that
its domain can be described explicitly.

Solution. Let u = x− x2, v = y+ xy. The Jacobian determinant is 1 at (0, 0) so there is
an inverse in some open set containing (0, 0). Now we can describe it explicitly as follows.
From the first equation we have

x =
1±
√

1− 4u

2
.

From u(0, 0) = 0 we must have

x =
1−
√

1− 4u

2
.

Then

y =
v

1 + x
=

2v

1−
√

1− 4u
.

We see that the largest domain in which the inverse exists is {(u, v) : u ∈ (0, 1/4), v ∈ R}.

6. Let F be a continuously differentiable map from the open U ⊂ Rn to Rn whose Jacobain
determinant is non-vanishing everywhere. Prove that it maps every open set in U to an
open set, that is, F is an open map. Does its inverse F−1 : F (U)→ U always exist?
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Solution. Let G ⊂ U be open and y0 = F (x0), x0 ∈ G. By the inverse function theorem,
there are balls Bδ(x0) ⊂ G and BR(y0) such that BR(y0) ⊂ F (Bδ(x0)), so F (G) is open.
That is, F is an open map. On the other hand, the change from the rectangular coordinates
to the polar coordinators is an example where an everywhere locally invertible map is not
globally invertible.


